Spoken Language Dialogue Architectures and Algorihtms

Roberto Pieraccini, Esther Levin, Wieland Eckert

AT&T Labs-Research
180 Park Avenue, Florham Park, NJ 07932, U.S.A
Tél.: (973) 360-8563 - Fax: (973) 360-8092
e-mail: {roberto, esther, eckert}@research.att.com - http://www.research.att.com

ABSTRACT

In this paper we discuss the evolution of spoken language
dialogue architectures and algorithms at AT&T Labs-
Research. First we introduce user initiated systems that
are able to understand user requests and just provide
answers. Then we discuss mixed initiative systems that
can take the initiative when necessary in order to reach
the application goal in the most effective way.
Furthermore we introduce one of the most ambitious
goals in the field today, namely learning the dialogue
strategy.

1. INTRODUCTION

One of the ultimate goals of the speech recognition
community is the implementation of machines able to
interact with humans in a natural conversational way in
order to provide services that would otherwise require
human operators or unfriendly menu based systems.

Although research in the field of human-machine spoken
dialogue started decades ago, only recently [9] were we
able to realize end to end systems. The ability of building
such systems can be attributed without any doubts to the
recent advances in the related technologies. First, the
ability of building high accuracy large vocabulary
spontaneous speech recognizers that can work in real time
on inexpensive computers. Second, the development of
robust language understanding systems that can deal with
the problems inherent to spontaneous speech. Third, the
recent flourishing of research aimed at the problem of
dialogue system architectures, and trying to solve issues
such as modularization, porting, reusing, fast prototyping,
etc.

In this paper we will discuss some of the evolution of
dialogue systems research at AT&T Labs-Research. This
effort started with the implementation of language
understanding systems suited for spontaneous speech that
could be regarded as a primitive form of dialogue system
that allow only user-initiated interactions. Then a more
complex architecture for mixed-initiative dialogue was
investigated and implemented. Finally we proposed a
mathematical formalisation of the human-machine
dialogue that will allow for learning of dialogue
strategies.

2. LANGUAGE UNDERSTANDING AND USER-
INITIATED DIALOGUE

A user-initiated dialogue system consists of a machine
that responds to user’s questions with the best possible
answer given the context of the whole session. The
evolution of dialogue is then a succession of user’s
questions and system’s answers. User initiated dialogue
can be generally implemented through a cascade
architecture, an example of which (for a database retrieval
application) is shown in Figure 1. Here is a brief
description of the process:

1. The speech recognizer transcribes input speech into
a sequence of words.

2. The lexical analyzer attaches tags to words (or short
phrases) that are semantically meaningful for the
application (e.g. numbers, proper names, modifiers,
etc.). Since some words can have multiple
interpretations within the same application (e.g. the
proper noun New York can be interpreted either as a
State or as a city), the output is a lattice of word
hypotheses (rather than a string)

3. The conceptual decoder finds contiguous sequences
of words hypotheses in the lattice and assigns them
labels belonging to a finite set of concepts that are
relevant for the application (e.g. origin, destination,
date, etc. in the case of a travel reservation
application.). The output of this module is called
conceptual segmentation.

4. The template generator constructs a symbolic
representation of the conceptual segments and
represents it as a set of key/value pairs. This is the
local meaning representation, that is the
representation of the meaning of the current sentence
independently from the previous user sentences in the
session.

5. The interpreter builds a more accurate
representation of the meaning taking into account
interactions between two or more concepts in the
same sentence, the context set by the previous
sentences, and specific interpretation rules for the
application. The output of this module, the contextual
meaning representation, is again a set of key/value
pairs.

6. The database interface translates the contextual
semantic representation into a database query. The

resulting data is then transformed into the desired
format (e.g. a table, a list, etc.) and sent to the user.

LATTICE OF
LEXICAL

SENTENCE
TRANSCRIPTION HYPOTHESES

LEXICAL
ANALYZER -

CONCEPT
SEGMENTATION

SPEECH
——

CONCEPTUAL
DECODER

SPEECH -
RECOGNIZER

DATABASE TEMPLATE
~*— |NTERFACE 1< INTERPRETER 4— GENERATOR [

SET OF
TUPLES

CONTEXTUAL
MEANING
REPRESENTATION

LOCAL MEANING

REPRESENTATION

Figure 1: The CHRONUS
understanding system.

spoken language

In the rest of this section we will give a short description
of each module, with reference to the CHRONUS system
[5] that was used within the ARPA ATIS [2] project.

2.1 Speech Recognizer

We will not describe the speech recognizer in this
context, except saying that is a HMM sub-word based
recognizer [6] using a variable n n-gram stochastic
language model [7] that produces the first best sentence
hypothesis in the for of a plain string of text.

2.2 Lexical Analyzer

The function of the lexical analyzer is that of creating a
lattice of word hypotheses out of a string of words (i.e.
the transcription of speech into words generated by the
speech recognizer [5].

The different hypotheses in the lattice correspond to
possible interpretations of words and/or phrases according
to predefined semantic categories. Most of the categories
correspond to classes of attributes of the database (e.g.
cities, dates, etc.) words that we decided to consider as
synonyms for later stages of the process. For instance, the
distinction between singular and plural forms of words as
well as different verb inflections is irrelevant for many
tasks, so they are collapsed in the same category. This
both reduces the effective size of the lexicon and
enhances the robustness of the stochastic conceptual
representation [1], especially in presence of recognition
errors (speech recognizers are likely to confuse among
different inflections of the same word). Numbers and
acronyms are parsed in all the possible ways, each parse
constituting a separate lattice hypothesis.

2.3 Conceptual Decoder

The idea behind the conceptual decoder is that of treating
a sentence as a sequence of phrases corresponding to units
of meaning called concepts. A Markovian process models

the sequence of concepts (a first order process in the
current implementation).

The sequence of words that forms a phrase related to a
given concept is also modeled by a Markovian process
represented by a concept conditional n-gram language
model.

In the current implementation the concept conditional
language models are bi-gram back-off networks [6]. The
overall model is called conceptual HMM [1][3].

The function of the conceptual decoder is that of
segmenting a sentence into phrases and assigning each
phrase to the correspondent concept. This translates into
finding the most likely sequence of states in the
conceptual HMM given the lattice produced by the lexical
analyzer and it is implemented as a finite state automata
intersection operation as explained in.

There are two problems in designing a conceptual
decoder for a given application: the choice of the
conceptual units and the training of the conceptual HMM.
The choice of the conceptual units generally requires a
good knowledge of the task. Most of the units generally
correspond to entities of the database.

Training a conceptual HMM implies providing a
considerable amount of examples of conceptual
segmentations and running a Viterbi training algorithm
[1] in order to estimate the parameters of the model. Of
course the most cumbersome part is providing examples
of segmentations, namely segmenting by hand thousands
of sentences. This can be enormously alleviated using a
training loop procedure [3] that uses an automatic
evaluation criterion to detect possibly wrong
segmentations in a segmented corpus.

2.4 Template Generator

The template generator produces a representation of the
sentence semantics in the form of a template, i.e. an
unordered set of keyword/value pairs (called fokens) [3]
starting from the segmentation produced by the
conceptual decoder.

Most tokens correspond to attributes of the database and
their values. For instance the token
DEPARTURE_CITY:SSFO corresponds to assigning the
value SSFO (i.e San Francisco) to the database attribute
departure_city.

There are tokens that act as modifiers and are recognized
either by the interpreter or by the database interface.
Examples of this are the token QUESTION (whose value
YES/NO instructs the database interface to produce a
yes/no answer), or the token DEPARTURE_PERIOD
(whose value modifies any DEPARTURE_TIME token in
the same template to AM or PM accordingly).

The requested information is specified by SUBJECT
tokens whose values have a direct correspondence to the
attributes of the database.

2.5 Interpreter

The function of the interpreter consists in resolving
ambiguities and providing missing information in the

a5 T T T T

anr- 1

| Sep.ad

NL accuracy %
2] 3
T T
L L

-
=]
T
L

60 Dec. ad 4

L . L .
o 10 20 30 40 50 BD 70
runs on Dec@3 test set

Figure 2: Incremental improvement of the ATIS
system

current template.

In general the interpreter merges the current template with
a context template according to a set of masking rules.
The resulting template is used for further processing and
stored as the new context template.

One example of general masking rule states that tokens in
the most recent template mask tokens in the context
template with the same key. One example of a specific
masking rule states that a YEAR token in the most recent
template masks DATE tokens in the context template (i.e.
the specification of a different year makes the previous
date invalid).

The interpretation rules are generally written by hand and
special care should be taken for them to be consistent. A
corpus and an evaluation procedure are very useful for the
development of this module, since they allow to set up an
automatic way of assessing the effectiveness and the
consistency of each newly introduced rule. In the
development of the ATIS interpreter every time new rules
were introduced the system was evaluated on a corpus of
about 5,000 sentences (this test was completely
automated and required only a few hours of CPU time).

Figure 2 shows the percentage of correct sentences in
almost 70 experimental runs during the three months in
which the ATIS interpreter was developed.

2.6 Database Interface

The database interface takes the semantic representation
in the form of a template and extracts the requested
information from a relational database. In general it is
necessary to provide some specific piece of software that
will convert the template representation into the query
language of the database (e.g. SQL, web-based forms,
etc.). Other more general solutions can be adopted in the

case the data is local and represented in a relational form
[13].

1.1 System Performance

The performance of the system based on the CHRONUS
approach is shown in Figure 3 where the official figures
for the three standard tasks in the ATIS program are
reported [5]. The scores for the speech recognition task,
the text understanding task and the speech understanding
task were among the best across all sites participating to

the evaluation.

100
59 ——
98
9 -
1 © Speech Recognition
g 9% — Word Accuracy
&1
3 95
=
W os4 9 Text Understanding
T Semantic Accuracy
o 93
92
o1 | © Speech Understanding
Semantic Accuracy

Figure 3: Performance of the AT&T system in the
1994 ARPA ATIS official evaluation.

3. MIXED INITIATIVE DIALOGUE
ARCHITECTURE

A user initiated system has many obvious limitations for
complex applications like database retrieval. For instance
when an initial question like / need some information
about flights to New York is asked, a system that does not
have the possibility of asking questions (such as a user
initiated system) will respond showing all the flights to
New York from any other city in the database. Such a
long response may not be appropriate for the kind of
output medium (e.g. an audio response). Moreover the
cost of accessing a remote database with such an
unrestricted question and the time for transferring the
results can be excessive

Mixed initiative systems constitute the natural evolution
of the user initiated systems. A mixed initiative system
shares with the user the right of asking questions as well
as giving answers and changing the course of the
conversation when necessary. Table 2 shows an example
of mixed initiative interaction.

Mixed initiative can hardly be implemented by simple
cascade architectures. Moreover it would be desirable to
have a general architecture that would easily fit different

USER INPUT
CITY: BOSTON

CONTEXT

SUBJECT: GROUND TRANS
ORIGIN: DENVER

DEST: BOSTON

TIME: MORNING

AIRLINE: DELTA

CURRENT
SUBJECT: GROUND TRANS
GROUND CITY: BOSTON

IEXPECTATIONS
GROUND CITY: ?

IDATA
TRANSPORT: TAXI, LIMO,
RENT-CAR

SYSTEM OUTPUT
SUBJECT: GROUND TRANS
GROUND CITY: BOSTON
TRANSPORT: TAXI, LIMO,
RENT-CAR

Figure 4: Representation

of the dialogue state

applications, and would
allow for a rapid
development of new
systems.

Failure to find such a

general architecture in the
past derived generally from
the lack of separation among
the different levels of
competence that intervene
during the dialogue activity.

AMICA [13], the AT&T
Mixed Initiative
Conversational Architecture,
is based on the identification
of a set of general, logically
motivated functions, called
dialogue actions. We think
that for certain classes of
dialogues there exists a
finite (and small) number of
such actions that can be
implemented in a general

way and parameterized in order to be used for different

applications.

The following is a basic set of dialogue actions:

- Understand: transforms the user natural language
input into a semantic representation (it corresponds to
the speech recognizer, lexical analyzer, conceptual
decoder, and template generator of section 0).

- Verbalize: transforms a semantic representation into
a natural language output. The action of verbalizing
data retrieved from the database is called verbalize

data.

- Context Tracking: consists in the interpretation of
the current user input in terms of the history of the
interaction. It includes both dialogue interpretation,
namely the ability of dealing with expectations set by
the machine itself (e.g. disambiguation on the basis
of previous questions asked by the machine), and
discourse interpretation, namely the ability of taking
into account the context set by the user during the
course of the whole interaction (corresponding to the
interpreter of section 0). In both cases it is necessary
to be able to recognize ambiguities.

- Retrieve Data: consists in the assembly and
submission of a query to a local or remote database
according to the current information gathered by the

system.

- Constrain: consists generating a request for
additional constraints based on the current topic and
information available. particular topic.

- Relax: consists in relaxing attributes of the query in
order to perform approximate queries to the database.

3.1 Dialogue Control

For explaining how the AMICA architecture works it is
necessary to introduce the concept of system state. The
system state is the collection of all the pieces of
information that characterize the whole dialogue system
at a certain point in time and will allow to perform the
next step of the interaction (to that respect the dialogue
system can be considered memoryless).

The system state is represented by frame like (i.e.
key/value pairs) data structure similar to the one shown in
Figure 3.

The dialogue strategy is a mechanism that, given the
current state of the system, selects one of the possible
actions. As an effect of the execution of the selected
action, the system state changes, then a new action is
selected by the strategy, etc.

First of all we have to realize that, in any realistic
application, the number of possible system states in
extremely large or infinite. Hence it is not possible to
proceed with the enumeration of all the states and assign
each one of the to a particular action.

Rather the selection of the proper action to execute given
the current state of the system is based on conditions on
the state. In the most general case the control can be
implemented as a finite state recursive transition network
whose nodes are associated with actions and whose
(ordered) transitions are associated with conditions. When
the control is in a generic node, the corresponding action
is executed (as a result the system state is modified).
Hence the conditions associated to the transitions from
that node are evaluated in a prescribed order. The first
condition that is verified leads to the next action, and the
process is repeated again.

An example of simple strategy for mixed initiative
dialogue is shown in Fig. 4 (Context Tracking has been
included in the Understand action in this example).

The control starts with the verbalization of a greeting.
Understand gets user’s input (interpreted by the context
tracking function). If the current user request is
underspecified, Constrain (1) will generate a request for
additional constraints that will be appropriately
verbalized. Otherwise Retrieve will access the database
with the current request. If too much data is returned by
the database (NDATA > f), then Constrain (2) will
generate a request for additional constraints that will be
verbalized. If the database returns no data (NDATA ==
0), Relax will relax constraints until some data is
retrieved. If a reasonable amount of data is retrieved (0<
NDATA <= t), it will be verbalized and a new request
from the user will be collected.

1 VERBALIZE

This is the AT&T Chronus Air Travel Information System, how may I help you?

2 UNDERSTAND
tomorrow morning

I want a direct flight from Denver to Boston between eight and nine thirty

3 RETRIEVE

There are no flights from Denver to Boston leaving between 8 and 9:30 in the

RELAX morning. Instead there are flights leaving at 10:39 and 11:05. Do you have any
RETRIEVE preference?
VERBALIZE DATA
4 UNDERSTAND Give me a delta flight
5 UNDERSTAND Flight DL296 leaves at 10:39 am and arrives at 3:15 pm. Other questions?
RETRIEVE
VERBALIZE

6 UNDERSTAND

I need ground transportation

7 CONSTRAIN Where, Denver or Boston?

VERBALIZE

8 UNDERSTAND Boston

9 RETRIEVE

VERBALIZE DATA rental car.

The following ground transportation is available in Boston: taxi, limousine,

10 UNDERSTAND

Please list all the flights with Continental

11 RETRIEVE

CONSTRAIN what time you want to leave?

VERBALIZE

There are too many flights that match your request. I need more information. At

Table 1: Example of dialogue with the AT&T Arline Information System

This simple strategy is able to generate a reasonable
behavior for database retrieval applications. The behavior
of the system during a session evolves through three
interaction modes, corresponding to loops in the strategy
of Figure 5. The first loop, that we call minimal
information (Understand — Constrain (1) — Verbalize) will
gather enough information from the user in order to
perform a reasonable database query. In fact, the absence
of this behavior will force to retrieve data even when the
user did not give the minimal required information. An
example from the ATIS domain is the user asking “I
would like information about flights to New York”, and
the system requesting from the database all the flights to
New York from any airport, a useless expensive query!

The second loop, that we call constraining, (Understand —
Constrain (1) - Retrieve — Constrain (2) - Verbalize) will
attempt to reduce the amount of data presented to the
user. Depending on the channel, there is a maximum
amount of data the user will be able to assimilate.
Typically two or three pieces of information (tuples) with
an audio channel, 10 or more with a small display, etc. If
more data is retrieved, other questions need to be asked in
order to trim it down to a reasonable quantity.

Finally the third loop, the relaxation loop (Understand -
Constrain (1) - Retrieve — Relax — Retrieve Relax —
Retrieve — Verbalize) attempts to give the user some data
in presence of over-constrained request (e.g. I would a
flight that leaves (exactly) at 7 a.m.).

An example of a fragment of dialogue drawn from the
Airline Information System and using the strategy of
Figure 4 is shown in Table 1.

3.2 Portability Issues

The process of developing a dialogue system for a new
application is greatly eased by the functional
independence of the various modules that compose the
system architecture. Moreover all the actions described so
far can be implemented in a fable driven or
programmable fashion.

We will give here some examples of the action
programmability in order to stress the application
independence of the system.

3.2.1 Verbalize

The verbalization (or sentence generation) process is
implemented by an interpreter that accepts sentence

N

if(REQUEST)

Understand
Context
Tracking

Verbalize
Data

Figure S: Example of mixed initiative strategy

archetypes with conditional clauses. An example of a
sentence archetype is the following:

if(NDATA > 1) {“There are "}
else {“There is "}
NDATA if(NDATA > 1) { “flight " }
else {“flights”}
“from “ DEPARTURE_AIRPORT
“to “ ARRIVAL_AIRPORT *“.”;

This archetype can generate sentences like:

There are 5 flights from Newark to Denver.
There is 1 flight from San Diego to Boston.

For the verbalization of relational database tuples the
process relies on the semantic description of the database
augmented by grammatical information. For instance
verbs and prepositions are attached to pairs of database
attributes, like:

FLIGHT_ID flies to DEPARTURE_AIRPORT
FLIGHT_ID | eaves fromARRIVAL_AIRPORT
FLIGHT_ID is served by AIRLINE
FLIGHT_ID uses a AIRCRAFT

These pairs of predicates are organized into a finite state
network that is then used for building sentences with an
arbitrary number of attributes, like

Flight UA706 leaves from Denver, flies to Newark, is
served by United, and uses a Boeing 747.

3.2.2 Constrain

The constrain action, in the way it was implemented in
this system, requires the specification of logical
expression whose truth guarantees that a set of constraints
for a given topic is available in the current state. Still with
reference to an airline application, the following is a valid
set of constraints for the topic FLIGHT:
i f (TOPIC: FLIGHT) ask

(AIRLINE && FLIGHT_NUMBER) ||
(DEPARTURE_AIRPORT &&

ARRIVAL_AIRPORT);

The constrain algorithm matches this expression with the
current state (each symbol is true if the corresponding
attribute is present in the state). If the expression is false,
another logical expression is computed whose truth will
make true the original expression. For instance, if the
state includes the following information:

AIRLINE : DL
DEPARTURE_AIRPORT: EWR

The constrain algorithm will generate the following
expression:

MISSING: FLIGHT_NUMBER ||
ARRIVAL_AIRPORT

Corresponding to the question:
Please specify your flight number or arrival airport
3.2.3 Relax

The relaxation action, in its simpler implementation,
requires a list of domain attributes order according to their
relative importance. For instance, in the airline
information task, the list can be: origin/destination, date,
time, type of aircraft, meal. Attributes are relaxed in the
order until a non empty set of tuples is found.

In certain application the relaxation procedure is more
complex, and special functions have to be appositely
designed. For instance, in a movie locator application, one
can be interested in relaxing the city attribute, hence
finding which one is the theater closer to a given city that
shows a certain film. This requires a specific algorithm
that computes the distance of theaters from cities (the may
not be provided by the database) and searches for the
closest one.

4. FORMALIZATION AND LEARNING OF MIXED
INITIATIVE DIALOGUE SYSTEMS

As we saw in the previous section the strategy determines
the behavior of the system, and it is generally built by
hand based on a good knowledge of the domain. For
instance a reasonable strategy for the airline domain is to
request the origin and the destination of the flight and the
departure date at the beginning of the transaction, because
we know that those are the most distinctive questions that
will greatly restrict the search in the database. But when
faced with a new domain the choice cannot be that
obvious. Moreover the criterion on which we base our
reasonable strategy (e.g. length of the interaction and
database retrieval in the airline example) can be different
from task to task. It would be highly desirable to have a
mathematical formalization of the strategy design process,
and to derive procedures for automating it. This is the
subject of the following sections.

4.1 Dialogue Systems as Markov Decision
Processes

- Good Bye. Final

S NSt
Cl=1"Wr+2*WF

Strategy 1:

| Which date 2| [Good Bye.|

. - Final
Strategy 2: Q > ,@

C2 =2*Wr+ 2*PZ*WE

Day
Month

Strategy 3:
[Which day 2| [Which month?| [Good Bye.|
- 5/ Day 5/ Day o/ Final
- g - ~\Month T\ state

C3 =3*Wr+ 2*P1*WE

Figure 6: Three different strategies

For explaining the formalization we use for describing the
dialogue process, we will use a very simple tutorial
example. We will assume that the goal of our dialogue
system is getting a date from a user through the shortest
possible interaction.

We will formalize a dialogue system by describing it in
terms of a state space, action set, and strategy.

In our simple tutorial example, the state of the system
includes only two entries: the day and the month, whose
values can be either empty, or filled through interaction
with the user. The total number of states is 411, including
one empty initial state, 12 states for which the month is
filled and the day is not, 31 states in which the day is
filled, but not the month, 366 states with complete dates,
and a special final empty state.

The action set include only four possible actions:

1. Asking which day.
2. Asking which month.
3. Asking which date. This is a more open-ended

question and will compel the user to answer with
a day and a month in the same sentence.

4. A final action, closing the dialogue and
submitting the information.

In actions 1, 2 and 3, the system asks the appropriate
question, and activates a speech recognition system in
order to obtain the user’s answer. We assume that the
probability of error of the speech recognizer depends on
the kind of question. In particular questions 1 and 2 will
both show a different word error probability than question
3 (being the user’s answer longer and more articulated).

Once the system is in a given state (for instance the initial
empty state) and an action is executed (for instance the
system asks which month), the system goes into another
state (in this case, depending on the user’s answer, one of
12 possible states, assuming the user is compliant). Since
the new system state resulting from the execution of an

action depends on external causes (for instance the user’s
response), we model it by transition probabilities

p—— —_ —
P.(s,,, =s'|s, =s,a, =a).
A dialogue session corresponds to a path in the state
space starting at the initial state and ending at a final state,
the dialogue strategy specifies, for each state reached,
what is the next action to be invoked.

At this point we introduce an objective measurement of
the quality of a dialogue session based on a cost function:

(1) C=ZCi,

that is the sum of individual costs incurring during the
interaction. Those individual costs

Ci measure the effectiveness of the interaction (e.g. its
length), the distance from the application goal (e.g.
whether the system provided the user the requested
service), and other costs, like database access costs.
Furthermore it has been shown [13] that also subjective
measurements like user satisfaction can be modeled as a
linear combination of costs, and could therefore used as
one of the terms in equation (1).

Now we can define that an optimal dialogue strategy is
the one that minimizes the expected value of cost C.

For our tutorial example, where the goal of the system is
to obtain the correct day and month values through the
shortest possible interactions, the objective function
includes three terms:

SC>=W,[KN>+W, <E>+W,. <UF >

Where <N> is the expected duration of the dialogue;
<E> is the expected number of errors for the filled slots
(ranging from 0 to 2); and <UF> is the expected number
if unfilled slots. The optimal strategy, i.e. the one that
minimizes <C>, will be a trade off between duration and
errors (in fact asking question 3 rather than 1 and 2 will
produce a shorter but more error prone dialogue), and will
depend on the values of the error probabilities.

In order to reflect this objective function in our dialogue
model, we associate a cost ¢ to the action a selected
while in a state s (in general we can say that action costs
are described by conditional distributions

PC(ct =C|St =s,at =Cl)).

The cost incurred with any of the first three actions in
day-and-month dialogue system is W, + W, [E . If we
assume that the concept error rate for recognition of
month or day for questions 1 and 2 is p,, for question 3

is p,, with p, > p,, then the expected cost
accumulated when actions 1 or 2 are taken is
W, +W, [p,, while for question 3 is W, +2[W_[p,.

The cost of action 4 (closing the dialogue and submitting
the obtained date) depends deterministically on the state

in which this action is taken and is W, +2[W,,. for an

initial state, W, + W, for states in which either the day

or month is unfilled, and W, for states in which both
values are filled.

Of course, different strategies for the same system result
in different expected session costs. Figure 5 shows three
different strategies and their associated expected costs.
For example strategy 1 (where the system does not even
engage in dialogue, closing the dialogue as the first
action) is optimal when the recognition error rate is too

high,ie. p, > Wy —W,)/W;.

In strategy 2 the system opens the dialogue by asking the
open ended question 3, fills out the day and the month
slots with the values recognized from the user response,
and closes the session. In strategy 3, the system first fills
up the day and then the month by engaging in actions 1
and 2, and then closes the session. Strategy 3 is optimal
when the difference in error rates justifies a longer

interaction: i.e. when p, —p, >W, /2 },).

The model we just described is known as Markov
decision process[8], or MDP, and is in general described
by the quadruple: state space, action set, transition
probabilities, and cost distributions.

4.2 Automatic Design of Man-Machine
Dialogue Systems: the Reinforcement
Learning Approach.

Stating the problem of man-machine dialogue design as
an optimization problem provides the following potential
advantages:

Objective evaluation: It is possible now to assess
different strategies for the same system just by comparing
their expected cost. It is also possible to compare different
systems that share the same objective function.

Automatic design: Since the problem of strategy design
is cast as optimization problem, it is possible to devise
methods for performing this optimization automatically.
In the simple example of the previous section it was
possible to derive the optimal strategy analytically. This is
not true in general with realistic applications. However
there are learning techniques, such as reinforcement
learning [8], that allow finding the optimal strategy in an
MDP from interactions.

4.2.1 An experiment with reinforcement learning.

Rather than explaining here the details of the
reinforcement learning algorithm, we will discuss the
results of an experiment devoted at automatically finding
a strategy for a simplified version of the airline
information task.

We restricted the possible actions of the system to the
following:

Greet the user with an open ended question (i.e. How can
I help you?);

Ask the user to provide information about a specific
attribute of the task (e.g. origin, destination, airline,
departure time, etc.);

Retrieve data from the database according to the current
user request (this action does not involve interaction with
the user);

Output data to the user;

Ask the user to release a constrain;

Close the dialogue.

In order to simplify the learning task we chose a very
simple state description. The state included three fields:
the USER field represents the user request (only the
keywords), the DATA field includes just the number of
data tuples retrieved from the database, and the SYSTEM
field records whether the actions retrieve or output have
been already used .

We decided to use the following cumulated cost:
C=W,IN+W, R+ W,P+W,U

where N is the number of interactions, R is the cost of
data retrieval (linear with the number of tuples retrieved),
P is cost of data presentation (zero for a acceptable
number of tuples and rapidly increasing with the number
of tuples thereafter), and U is the user dissatisfaction cost
that penalizes, with a fixed cost, dialogues that fail to
provide any flight information to the user.

The system starts with no knowledge of the task, i.e., each
action had the same probability of being selected by the
system at any step. A typical dialogue with an untrained
system will look like the following:

S| RELEASE AIRLINE | Do you want to choose another
airline?

U] What?

S| RETRIEVE (6,893 flights retrieved)

S| CONSTRAIN When do you want to leave?

DEPARTURE TIME

U Uh? I want to go to Boston

S| OUTPUT DATA There are 6,893 flights ...

U I don't understand, can you
please show me
the flights from San Francisco
to Boston?

S| CLOSEDIALOGUE | Thank you for using AT&T.

Of course the total cost for this dialogue is quite high,
especially due to the high cost of retrieval (all the
database was retrieved here) and data output (6893
flights).

For learning the optimal strategy we used a Monte Carlo
style reinforcement learning algorithm with exploring
starts, as explained in [17]. With reinforcement learning it
is not possible to train a system using a fixed corpus of

interaction, since the system is learning while interacting,
and the strategy is changing from iteration to iteration.
Also it is not realistic to use real users for the learning
stage that can be very long (thousands of interactions) and
annoying (see the previous dialogue). So we decided to
use a stochastic user model [15] designed to simulate the
interaction. The user model includes probability
distributions over user’s dimensions such as compliance
in answering specific questions and number and ype of
unsolicited constraints provided in open ended questions.
Those parameters were estimated on the ATIS corpus.

With the user model interacting with the reinforcement
learning algorithm for thousands of interactions the
system was able to learn the following optimal strategy:

start the dialogue by greeting (the probability of getting
more information from the user is higher with greeting
rather than a specific question),

ask constraining questions until the origin, destination,
and airline are specified,

retrieve data from the database.

if the resulting data set is empty (because the query was
over-constrained), release the airline constraint and
retrieve again.

if there are too many flights in the data set, ask to
constrain the departure time and retrieve again.

if at any point during the dialogue the retrieved data set
has a reasonable number of flights, the data is presented
to the output and the dialogue is closed.

An example of dialogue performed with a trained system
is as follows:

S| GREETING This is the AT&T flight information
system, how may I help you?

U I want to go to Boston

S| CONSTRAIN | What is your departure airport?
ORIGIN

U San Francisco.

S| CONSTRAIN | Which airline?
AIRLINE

U Delta.

S| RETRIEVE (30 flights retrieved)

S| CONSTRAIN | When do you want to leave?
DEPARTURE
TIME

U Late in the afternoon.

S| RETRIEVE (3 flights retrieved)

S| OUTPUT Flight ... leaves at ..., flight ... leaves
DATA & ﬂ &

U Thanks.

S| CLOSE Thank you for using AT&T.

DIALOGUE

This strategy is the same as the one that was designed by
hand and it I shown in Figure 4. This experiments
demonstrates that it is possible build systems that are able
to learn (and eventually to adapt) automatically what is
the best dialogue strategy based only on the enumeration
of the possible actions and on the definition of sensible
cost functions.

Summary

We discuss in this paper the evolution of spoken language
dialogue systems starting from the user-initiated model,
where the user asks questions and the system provides
only the most reasonable answer in the context of the
previous interaction. The following step in the evolution
of dialogue system is the mixed initiative. In this model,
the system can take the initiative at any time during the
conversation in order, for instance, to gather additional
information from the user for a more -effective
achievement of the goal. We described a general
architecture for implementing mixed initiative system,
based on the concepts of system state, dialogue actions,
and strategy. This architecture naturally leads to a formal
definition of a dialogue system in terms of a Markov
decision process, and to the ambitious goal of learning the
dialogue strategy while interacting. We show that
learning is possible even in complex applications, and that
reinforcement learning algorithm can find reasonable
strategies that are optimal for a given cost function.

REFERENCES

[1] Pieraccini, R., Levin, E., ”Stochastic Representation
of Semantic Structure for Speech Understanding,”
Speech Communication, Vol.11 pp. 283-288, 1992.

[2] MADCOW, “Multi-Site Data Collection for a
Spoken Language Corpus,” Proc. Of Fifth Darpa
Workshop on Speech and Natural Language,
Harriman, NY, Feb 1992.

[3] Pieraccini, R., Levin, E., “A learning approach to
natural language understanding," in Speech
Recognition and Coding, New Advances and Trends,
NATO ASI Series, Springer, 1993.

[4] Pereira, F., Riley, M. D., Sproat, R., “Weighted
rational transductions and their application to human
language processing,” ARPA Human Language
Technology Workshop, Princeton, NJ, March 1994.

[5] Levin, E., Pieraccini, R. “CHRONUS, The Next
Generation,” Proc. of 1995 ARPA Spoken Language
Systems Technology Workshop, Austin Texas, Jan.
1995.

[6] Bocchieri, E.L., Riccardi, G. Anantharaman, J., “The
1994 AT&T ATIS CHRONUS Recognizer,” Proc. of
1995 ARPA Spoken Language Systems Technology
Workshop, Austin Texas, Jan. 1995.

[7] Riccardi, G., Bocchieri, E., Pieraccini, R., “Non
Deterministic Stochastic Language Models for
Speech Recognition,” Proc. of ICASSP 95.

[8] Kaelbling, L. P., Littman, M. L., Moore, A. W.,
“Reinforcement Learning: A Survey,” in Journal of
Artificial Intelligence Research, No. 4, pp. 237-285,
May 1996.

[9] Sadek, M., D., et. al. “Effective Human-Computer
Cooperative ~ Spoken Dialogue: the AGS
Demonstrator,” in Proc. of ICSLP 96, Philadelphia,
PA, Oct. 96.

[10] Gorin, A. L., Parker, B. A., Sachs, R. M. and Wilpon,
J. G., "How may I help you?," Proc. Interactive
Voice Technology for Telecommunications
Applications (IVTTA), Oct. 1996, pp. 57-60.

[11]Kamm, C., Narayanan, S., Ritenour, R. and Dutton,
D., “Evaluating spoken dialog systems for
telecommunication services,” Proc. Eurospeech97,
Greece, Sept. 1997, pp. 2203-2206.

[12] Walker, M., A., Hindle, D., Fromer, J., Di Fabbrizio,
G., Mestel, C., “Evaluating Competing Agent
Strategies fro a Voice Email Agent,” Proc.
Eurospeech97, Greece, Sept. 1997, pp. 2219-2222.

[13]Pieraccini, R., Levin, E. and Eckert, W., “AMICA:
the AT&T Mixed Initiative Conversational
Architecture,” Proc. Eurospeech 97, Rhodes,
Greece, Sept. 1997, pp 1875-1878

[14] Walker, M. A., Littman, D. J., Kamm, C. A., Abella,
A., “PARADISE: A Framework for Evaluation of
Spoken Dialogue Agents,” in Proc. 35-th Annual
Meeting of the Association for Computational
Linguistics, Madrid, Spain, 1997.

[15]Eckert, W., Levin, E. and Pieraccini, R., “User
modeling for spoken dialogue system,” ASRU '97,
Proc. of 1997 IEEE Workshop on Automatic Speech
Recognition and Understanding, Santa Barbara, CA,
Dec.1997.

[16]Gorin, A. L., Riccardi, G. and Wright, J. H., ""How
may I help you?," Speech Communication, To
appear.

[17]R. S. Sutton, A. G. Barto, “Reinforcement Learning,
an Introduction,” MIT Press, 1998.

10

